LEVEL DETECTORS AND SCHMITT TRIGGERS

INTRODUCTION

A level detector can be implemented very simply with a voltage comparator as shown below. The voltage level to be detected is generated with a voltage divider and applied either to the positive or negative input and the analog signal is applied to the other input. Voltage comparators are op amps that are not internally stabilised for negative feedback in order to provide a faster operation - smaller rise and fall times of O/P. Voltage comparators can also provide logic compatible voltage levels at their O/P. Normal op amps can be used if slower operation can be tolerated but the O/P saturation levels are usually not logic level compatible except for a few op amps.

Ideally the output waveform of a voltage comparator will be as shown below where the output level tells whether the input signal is above or below the detection level set up at one of the comparator inputs.

In practice, any substantial noise appearing on the input signal will make the O/P oscillate or "chatter" when the input signal is in the vicinity of the detection level. Even without noise, the O/P may chatter because of undesired negative feedback usually caused by stray capacitance or undesired negative feedback through the supply rails. To minimise feedback through supply rails, by-pass capacitors should be connected right next to supply pins. The input signal should be filtered as much as possible to reduce the noise level.
Elimination of Chattering by Use of Positive Feedback

First method: **DC coupled positive feedback or DC hysteresis**

Use of positive feedback will produce a voltage step in the detection threshold to pull the +ve input voltage out of reach of the -ve input voltage (input signal + noise here for inverting detector) thus forcing the output to switch only once. This will work as long as the peak to peak noise voltage is less than the hysteresis voltage or voltage step.

\[
V^+ = V_o \times \frac{R_{TH}}{R_{TH} + R_F} + V_{TH} \times \frac{R_F}{R_{TH} + R_F} = V_o \times \frac{1K}{1K + 100K} + 4 \times \frac{100K}{100K + 1K} = 3.96 + \frac{V_o}{101}
\]

For design purposes, use

\[
\frac{R_F}{R_{TH}} = \frac{\Delta V_o}{UTP - LTP} - 1 = \frac{\Delta V_o}{V^+} - 1
\]

where \(\Delta V^+\) is the hysteresis or noise margin.

Non-Inverting Detector

Positive feedback can also be used with the non-inverting comparator to get rid of chattering, the only difference being that the reference voltage is kept fixed at the -ve l/P and \(V^+\) is not a low amplitude squarewave superimposed on the detection level but it is a small amplitude squarewave superimposed on top of a fraction of \(V_{in}\).

\[
V^+ = V_o \times \frac{R_E}{R_E + R_F} + V_{in} \times \frac{R_F}{R_E + R_F} = V_o \times \frac{1K}{1K + 100K} + V_{in} \times \frac{100K}{100K + 1K} = 0.99V_{in} + 0.0099V_o
\]
Second method: AC coupled positive feedback or AC hysteresis

The output will switch cleanly, only once, upon detecting the threshold voltage set up by the voltage divider R_1-R_2 as long as the hysteresis voltage or differential voltage V^+-V^- is kept greater than the noise voltage present at the input. The feedback capacitor only provides a temporary +ve feedback pulse which pulls V^+ out of reach of V^- for about 5τ for low level noise. The worst case scenario will occur when the slope of the input signal is the lowest, that is when $(V_{in}+\text{noise})$ takes the longest time to cross the detection threshold.

For low-level noise:

$$\frac{\Delta V_{in}}{(dV_{in}/dt)_{\text{min}}} = \frac{\text{noise margin}}{\text{min. slope}}$$

where $\tau = R_{TH} C_F$

To be safe, one should at least double the minimum time constant obtained from the above equation.

NOTE: The non-inverting configuration is not recommended because it may be inaccurate in some situations, therefore avoid using it unless you know what you are doing.
DESIGN EXAMPLE-1 LEVEL DETECTOR WITH DC HYSTERESIS

Design a +6V inverting level detector with 100 mV DC hysteresis (or 100 mV noise margin) using an LM311. The output must be TTL compatible and supply voltages available are +5V and ±15V. Analyse your circuit for exact trigger points and modify to center hysteresis exactly on +6V.

1. Let $R_P = 1K$
 Low R_P yields small rise time of O/P.

2. For small hysteresis values, $R_F >> R_1R_2$ therefore let us ignore R_F and assume that it does not load the voltage divider R_1-R_2. A +6V reference voltage is set up at the +ve I/P and requires a resistor ratio $R_1/R_2 = V_1/V_2 = 9/6 = 1.5$
 Let $R_1 = 1.5K$ and $R_2 = 1K$ std.

3.
 \[
 \Delta V^+ = \Delta V_{in} = \Delta V_o \times \frac{R_{TH}}{R_{TH} + R_T} \Rightarrow \frac{R_F}{R_{TH}} = \frac{\Delta V_o}{\Delta V_{in}} \times \frac{V_o^+ - V_o^−}{UTP - LTP}
 \]
 \[
 \frac{R_F}{R_{TH}} = \frac{5 - 0.2}{100m} - 1 = 47 \Rightarrow R_F = 47 \times 1K \parallel 1.5K = 28.2K
 \]
 Let $R_F = 27K$ std
 $R_{BAL} = 1K \parallel 1.5K \parallel 27K = 587 \ (560\Omega $ std)

4. Analysis of trigger points

 LTP $V_o = 5.874V$ and LTP $V_o = 5.979V$
 Hysteresis = UTP - LTP = 105.1 mV
 ave TP= 5.926V

Transfer Function
5. **Design modifications**

The results obtained with the preceding design are quite satisfactory for most applications where the average trigger level needs not be extremely accurate. It was assumed that R_F did not load the $R_1 - R_2$ voltage divider and this accounts for the average trigger level not being exactly $+6V$.

Now let us assume that we want an average threshold level of exactly $+6V$, that is we want the hysteresis curve to be centered exactly on $+6V$. For a good design we should derive the reference voltage from a precision voltage reference and not the $+15V$ supply rail. Nevertheless let us assume that the $+15V$ supply voltage is extremely accurate and derive the reference voltage from it.

As it stands now, with $R_1 = 1.5K$ and $R_2 = 1K$, the average trigger level is $5.926V$ and is short of $+6.00V$ by 74 mV, therefore we need to increase the Thevenin voltage by that amount in order to center the hysteresis on $6.00V$. Let us modify R_2 slightly to obtain $V_{TH} = V_2 = 6.074V$

$$\frac{R_1}{R_2} = \frac{V_1}{V_2} = \frac{15 - 6.074}{6.074} = 1.46954,$$

therefore $R_2 = 1.5K/1.46954 = 1021\Omega$

![Final circuit diagram](image)

Exercise

Analyse the circuit yourself to verify that the average of the two trigger points is exactly $+6.00V$ now and that the hysteresis is slightly higher than before.
DESIGN EXAMPLE-2 MULTI-LEVEL DETECTOR

Design a multi-level detector that fulfills the following functions. Use LM339 QUAD comparators. Comparator O/P’s must be TTL compatible.

<table>
<thead>
<tr>
<th>Analog I/P conditions</th>
<th>Binary O/P (B₁B₀)</th>
<th>Hysteresis on trigger levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vᵢₙ > +9V</td>
<td>11</td>
<td>30 mV</td>
</tr>
<tr>
<td>+9V > Vᵢₙ > +6V</td>
<td>10</td>
<td>30 mV</td>
</tr>
<tr>
<td>+6V > Vᵢₙ > +3V</td>
<td>01</td>
<td>30 mV</td>
</tr>
<tr>
<td>Vᵢₙ < +3V</td>
<td>00</td>
<td>30 mV</td>
</tr>
</tbody>
</table>

1. Set up a voltage divider to generate the threshold levels of +3V, +6V and +9V. Since the hysteresis is very small, the Rᵢ values will be very high, therefore assume that the Rᵢ’s will not load the voltage divider. Filter the supply voltage to produce clean threshold voltages.

2. Determine Rₕ seen by +ve inputs of each comparator and calculate Rᵢ values.

For +9V and +6V comparators, we have

\[
\frac{Rᵢ}{Rₕ} = \frac{ΔV₀}{ΔVᵢₙ} - 1 = \frac{5 - 0}{30m} - 1 = 165.7 \quad \Rightarrow \quad Rᵢ = 165.7 \times 1.8K = 298.2K \rightarrow 300K \text{ std}
\]

For +3V comparator, we have

\[
\frac{Rᵢ}{Rₕ} = \frac{ΔV₀}{ΔVᵢₙ} - 1 = \frac{5 - 0}{30m} - 1 = 165.7 \quad \Rightarrow \quad Rᵢ = 165.7 \times 1.2K = 198.8K \rightarrow 200K \text{ std}
\]

![Circuit Diagram](image_url)

NOTE: The voltage comparators can also be connected in the non-inverting configuration.
INVERTING LEVEL DETECTOR DESIGN PROCEDURE - AC HYSTERESIS

1. Pull-up resistor: with open collector devices, select value small enough for good switching speed (turn off time proportional to \(R_p C_{stray} \)) and not too small not to overload the device O/P.

2. If \(R_p \) is used, determine \(V_{OH} \) min required for valid \(V_{OH} \) on LO-HI rising edge. Use equation shown beside.

3. Without pull-up, determine ratio \(\frac{R_2}{R_1} = \frac{V_2}{V_1} = \alpha \) required to obtain the desired reference voltage, then select standard \(R_1 \) and \(R_2 \) values for an accurate ratio.

4. With pull-up resistor, determine ratio \(\frac{R_2}{R_1} = \frac{V_2}{V_1} = \alpha \) to obtain the desired reference voltage, and then calculate \(R_1 \) min (from equation shown beside) to achieve \(V_{OH} \) min. Select standard values for best ratio of \(R_2/R_1 \).

5. Calculate minimum \(C_F \) for noise margin:

\[
R_{TH}C_F \geq 0.5 \times noise\ margin / (dV_{in}/dt)_{min}
\]

Do not select \(C_F \) too much above limit as it restrains the minimum time between two consecutive detections. One must allow \(C_F \) to discharge between two detections, otherwise the + input of the comparator will not have time to settle back to the reference level. Use formulas shown below to determine maximum \(C_F \) given \(\Delta t_{det} \) minimum. If \(R_p \) is not used, then \(R_p = 0 \) in formulas.

\[
\Delta V_{REF} = \Delta V_o \uparrow \times \left(\frac{R_{TH}}{R_{TH} + R_p} \right) \quad \Delta V_{REF} = \Delta V_o \downarrow
\]

\[
\Delta t_{det} \left(R_{TH} + R_p \right) C_F \times \ln \left[\frac{\Delta V_o \uparrow}{\Delta V_{error}} \times \frac{R_{TH}}{R_{TH} + R_p} \right] \quad \Delta t_{det} \left(R_{TH} C_F \times \ln \left[\frac{\Delta V_o \downarrow}{\Delta V_{error}} \right] \right)
\]

6. Make \(R_3 = R_1 \| R_2 \) for minimum DC offset. Select standard \(R_3 \) (not critical).
DESIGN EXAMPLE 3 Design a +6V level detector that produces a TTL output using an LM311 voltage comparator with ±15V and +5V supply voltages. Assume that the input signal is a triangular wave with an amplitude of 8Vp and a frequency range of 1 kHz to 25 kHz. Assume a noise margin of 20 mV and a residual voltage error of 50 mV maximum on the feedback capacitor.

1. Let \(R_p = 2K \) for fast switching of LM311 output. The maximum \(I_o \) of the LM311 will occur when the O/P switches HI to LO, and is given by the following:
 \[
 I_o^{(max)} = 2.4 \text{mA} + I_{IL}^{(max)} + \Delta V_o / R_{TH}
 \]
 where \(I_{IL} \) and \(\Delta V_o / R_{TH} \) are not known yet but will be less than 10 mA which does not pose any problem for the LM311 current capacity.

2. \(V_{OH \ min} \) is about 2.2V for TTL and assuming \(V_{OL} = 0.2V \) and \(V_{OH} = 5V \) for LM311, we have:
 \[
 \left(V_{OH} - V_{OL} \right) \times \frac{R_{TH}}{R_{TH} + R_p} + V_{OL} > V_{OH \ (min)} \Rightarrow \frac{5 - 0.2 \times R_{TH}}{R_{TH} + 2K} + 0.2 > 2.2 \Rightarrow R_{TH} > 2.8K
 \]
 \[
 R_1 = \frac{V_1}{V_2} = \frac{9}{6} = 1.5 \quad R_2 = \left[\frac{1}{R_1} + \frac{1}{1.5R_2} \right] ^{-1} \Rightarrow \frac{R_2}{R_1} > 4.66k
 \]
 Let \(R_2 = 10K \) and \(R_1 = 15K \) for an exact ratio of 1.5

3. N/A

4. \[
 \Delta t_{det \ min} = 2 \times \frac{(8V - 6V)}{800K \ V / s} = 5 \mu s
 \]

5. \[
 \frac{dV_{in}}{dt}_{\ min} = \frac{16V_{PP}}{0.5\ ms} = 32K \ V / s
 \]
 \[
 \frac{dV_{in}}{dt}_{\ max} = \frac{16V_{PP}}{20\ \mu s} = 800K \ V / s
 \]
 \[
 \Delta t_{det} \min = 2 \times \frac{(8V - 6V)}{800K \ V / s} = 5 \mu s
 \]
 \[
 C_F \geq \frac{0.5 \times \text{noise margin}}{R_{TH} \times \frac{dV_{in}}{dt}_{\ min}} = \frac{0.5 \times 20mV}{6K \times 32K} = 52 \ pF
 \]
 \[
 C_F \leq \frac{\Delta t_{det}}{(R_{TH} + R_p) \times \ln \left[\frac{\Delta V_o \uparrow}{\Delta V_{error}} \times \frac{R_{TH}}{R_{TH} + R_p} \right]} = \frac{5 \mu s}{(6k + 2k) \times \ln \left[\frac{4.8V}{50mV} \times \frac{6k}{6k + 2k} \right]} = 146.1 \ pF
 \]
 \[
 C_F \leq \frac{\Delta t_{det}}{R_{TH} \times \ln \left[\frac{\Delta V_o \downarrow}{\Delta V_{error}} \right]} = \frac{5 \mu s}{6k \times \ln \left[\frac{4.8V}{50mV} \right]} = 182.6 \ pF
 \]
 \[
 C_F = \frac{(52p + 146.1p)}/2 = 99 \ pF, \ 100 \ pF \ std
 \]
6. \[R_3 = R_1 \| R_2 = 10k \| 15k = 6k \implies 6.2k \text{ std} \]

Final circuit

![Circuit Diagram](image)

Circuit Analysis

A) Analysis of falling edge

Thevenising the 10K-15K voltage divider, we obtain the circuit shown below.

Right before the falling edge, there is no current in the capacitor because it is charged at a constant voltage \((i=C \frac{dV}{dt})\). The O/P of the comparator is O/C (open circuit) therefore there is no current in the pull-up resistor if the TTL load does not draw any current.

At the very instant that \(V_o\) drops from 5V to 0.2V, \(V^+\) also drops by the same amount because the capacitor voltage does not change instantaneously but it will be charged from 1V to 5.8V in \(5 \times 6k \times 100p = 3\mu s\). After \(5\tau\) \(V^+\) goes back to +6V to be ready for the next detection.
B) Analysis of rising edge

Right before the rising edge, there is no current in the capacitor because it is charged at a constant voltage \((I = C \frac{dV}{dt}) \). The O/P of the comparator is saturated at about 0,2V and sinks 2,4 mA + \(I_{IL} \). The capacitor is charged at a steady 5,8V.

At the very instant that \(V_o \) switches to a high, the O/P of the comparator goes O/C and steps up to 3,8V then rises exponentially to +5V in \(5\tau \). The capacitor voltage does not change instantaneously but the capacitor will be discharged from 5,8V to 1V in \(5*(6k+2K)*100p=4 \mu s \). After \(5\tau \), \(V^* \) goes back to +6V to be ready for the next detection.

C) Overall waveforms

NOTE: A non-inverting level detector with AC hysteresis (capacitive feedback) is not recommended because of its poor accuracy under certain conditions.
Level Detectors and Schmitt Triggers

NON-INVERTING SCHMITT TRIGGER DESIGN PROCEDURE - DC HYSTERESIS

Transfer function

Circuit diagram

1. With open collector voltage comparators, select pull-up resistor small enough for good switching speed (turn off time $\alpha R_P C_{stray}$) and not too small not to overload the O/P.

2. Calculate the ratio $\frac{R_E}{R_F} = \frac{V^+_o - V^-_o}{UTP - LTP} = \beta$ With pull-up resistor, assume V^+_o.

3. A) With op amp, select standard R_E and R_F values large enough so that op amp O/P is not overloaded and not too large - range 10k to 500k.

B) With pull-up resistor, determine $R_E + R_F$ necessary to obtain assumed V^+_o.

$$R_E + R_F = \left(V^+_o - LTP \right) / I \Rightarrow I = (V_{SUP} - V^+_o) / R_P$$

ratio $R_E / R_F = \beta$

Solve above two equations for $R_E(\text{theo})$ then try standard values around $R_E(\text{theo})$ to achieve R_F / R_E ratio.

4. Using standard values of R_E and R_F analyze the circuit in order to find the reference voltage needed by assuming $V^+ = V^-$ at one of the trigger points.

5. Calculate ratio $R_1 / R_2 = V_1 / V_2 = \alpha$ for desired V_{REF}

A) FET input op amp or comparator: determine standard values of R_1 and R_2 needed to obtain the reference voltage.

B) BJT input op amp or comparator: ratio R_1 / R_2 and approximate balancing of the DC input resistance (for min DC offset) is required.

$$\frac{1}{R_1} + \frac{1}{R_2} = \left[\frac{1}{R_E} + \frac{1}{R_F} = \frac{1}{\alpha R_2} + \frac{1}{R_2} \right] \Rightarrow$$

solve for $R_2(\text{theo})$, then try several standard values around $R_2(\text{theo})$ and select best $R_1 - R_2$ combination for an accurate ratio α.

V^- is a fixed reference voltage - 0,1 μF cap filters supply noise.
Design a Schmitt trigger with the hysteresis function shown above. Use $R_p = 1.5K$.

1. $R_p = 1.5K$
2. $\frac{R_E}{R_E} = \frac{V^+ - V^-}{UTP - LTP} = \frac{4.5 - 0.2}{2 - (-2)} = 1.075 = \beta$
3. N/A
4. $R_E + R_F = \frac{4.5 - (-2)}{0.333} = 19.5K = R_E + 1.075R_E$

$$2.075R_E = 19.5K \Rightarrow R_E = 9.4K$$

<table>
<thead>
<tr>
<th>R_E std</th>
<th>8.2k</th>
<th>9.1k</th>
<th>10k</th>
<th>11k</th>
<th>12k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_E = 1.075R_E$</td>
<td>8.82k</td>
<td>9.78k</td>
<td>10.75k</td>
<td>11.82k</td>
<td>12.9k</td>
</tr>
<tr>
<td>R_F std</td>
<td>9.1k</td>
<td>10k</td>
<td>11k</td>
<td>12k</td>
<td>13k</td>
</tr>
</tbody>
</table>

5. Analyse for V_{REF} required - use either one of the two trigger points.

One can see that $V_{REF} = V^+$ is not exactly the same for both trigger points because the standard resistor values are not equal to the theoretical values.

$$V_{REF} = \frac{1.17 + 1.136}{2} = 1.153V$$

6. $\frac{R_1}{R_2} = \frac{15 - 1.153}{1.153} = 12.01$ To balance the inputs for minimum DC offset, we have:

$$\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{12.01R_2} + \frac{1}{R_2} = \frac{1}{12K} \Rightarrow R_2 = 6.76K$$
Level Detectors and Schmitt Triggers

Select standard R₁ and R₂ for an accurate ratio with an R₂ value picked around 6.76K.

<table>
<thead>
<tr>
<th>R₂ std</th>
<th>5.6k</th>
<th>6.2k</th>
<th>6.8k</th>
<th>7.5k</th>
<th>8.2k</th>
<th>10k</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁ = 12</td>
<td>67.2k</td>
<td>74.4k</td>
<td>81.6k</td>
<td>90k</td>
<td>98.4k</td>
<td>120k</td>
</tr>
<tr>
<td>R₁ std</td>
<td>68k</td>
<td>75k</td>
<td>82k</td>
<td>91k</td>
<td>100k</td>
<td>120k</td>
</tr>
</tbody>
</table>

Final Circuit

Note: The two input resistances are not perfectly balanced, that is \(R_P = 6.24K \) and \(R_N = 9.23K \), which cause a small offset of the trigger points (x mV) but this does not pose a major problem if the accuracy of the trigger points is not too critical.

CIRCUIT ANALYSIS

First find the reference voltage and then find the two input voltages for which \(V_- = V_+ = V_{REF} \).

\[
V_{REF} = 15 \times \frac{10k}{(10K + 120K)} = 1.154V
\]

Transfer function

Waveforms

Note: One can notice that \(V_{out} \) varies a little with \(V_{in} \) in the high state because of the open collector O/P of the LM 311:

\[
V_o = 5 \times \frac{R_E + R_F}{R_E + R_F + R_E} + V_{in} \times \frac{R_P}{R_E + R_F + R_E} = 4.717 + 0.0566 \times V_{in}
\]
DESIGN EXAMPLE 5 HI-SPEED LEVEL DETECTOR WITH DC HYSTERESIS

Design a threshold detector for a detection level of -4V and a 10 mV hysteresis using a Schmitt trigger. Use a high speed AD9696 voltage comparator with +5V supply. Use a +5V precision voltage reference powered off a +15V supply for an accurate threshold.

AD9696 DATA
\[V_{SUP} = \pm 7V \text{ max} \]
\[V^- \text{ to } V^+ = \pm 5V \text{ max} \]
\[\text{input voltage range: } +1.4V \text{ to } 3.7V \text{ with } V_{SUP} = +5V \text{ and } 0V \]
\[\text{output voltage levels: } V_{OL} = 0.1V \text{ and } V_{OH} = 4.9V \text{ typical at no load} \]
\[\text{propagation delay: } 4.5 \text{ ns typ, } 7 \text{ ns max} \]
\[\text{input bias current: } 16 \mu A \text{ typ, } 55 \mu A \text{ max at 25°C} \]

We cannot apply -4V directly to the comparator inputs with a single +5V supply because the input voltage range is restricted from +1.4V to +3.7V with a midrange value of 2.55V. Therefore we will have to pull up the input trigger voltage of -4V to some arbitrary value within the input range. Let us pick \(V^- = V^+ = +2.5V \) at triggering which makes it easy to derive from the +5V reference, that is \(R_1 = R_2 \).

Because the hysteresis is so small, \(R_F > R_{E1} || R_{E2} \) and \(I_F << I_{E1} \text{ or } I_{E2} \), therefore \(I_{E1} \approx I_{E2} \).

From the circuit diagram, we have:

\[
\frac{R_{E1}}{R_{E2}} = \frac{6.5}{2.5} = 1.6 \quad \Rightarrow \quad R_{E1} = 1.6k \text{ and } R_{E2} = 1k
\]

\(R_{E1} \) and \(R_{E2} \) should not be picked too large if we want maximum switching speed of the comparator because the +ve feedback voltage can be slowed down by the input stray capacitance (3 pF typ) of the AD9696 where the time constant is

\[
\tau^+ = \left(R_{E1} || R_{E2} || R_F \right) C_{STRAV} \approx \left(R_{E1} || R_{E2} \right) C_{STRAV}.
\]

\(R_F \) is calculated for the desired hysteresis:

\[
\frac{\Delta V_{out}}{\Delta V_{in}} = \frac{V_{OH} - V_{OL}}{\text{UTP} - \text{LTP}} \approx \frac{R_F}{R_{E1}} = \frac{4.9 - 0.1}{10m} = 480 \quad \Rightarrow \quad R_F = 480 \times R_{E1} = 1.248M (1.2M \text{ std})
\]

To balance the inputs, we have:

\[
R_i \parallel R_1 = 0.5 R_i = R_{E1} || R_{E2} || R_F = 2.6k \parallel 1.2M = 722 \quad \Rightarrow \quad R_i = R_2 = 2 \times 722 = 1.44k \quad \Rightarrow \quad 1.5k \text{ std}
\]
Tentative circuit #1

Derivation of hysteresis formula

At triggering, $V^- = V^+ = V_{out} + V_{REF} + V_{bias} = V_{bias} + V_{out} + V_{REF} + V_{bias} = V_{bias} + V_{out} + V_{REF} + V_{bias}$

Since $R_F \gg R_{E1}$ or R_{E2}, $V^+ \approx V_{out} + V_{REF} + V_{bias} = V_{bias} + V_{out} + V_{REF} + V_{bias}$

$V_{bias} = V^+ - V^- = V_{out} + V_{REF} + V_{bias} - V_{out} - V_{REF} - V_{bias} = \Delta V_{bias} = \Delta V_{out} = \Delta V_{bias}$

If we account for input bias currents of the comparator, we can show the following for balanced input resistances:

$UTP - LTP = \Delta V_{bias} = \Delta V_{out} = 4 I_{bias} R_{E1}$

NOTE: positive I_{bias} for current going into inputs of comparator and negative I_{bias} for current coming out of comparator.

$UTP - LTP = \Delta V_{out} \frac{R_{E1}}{R_F} - 4 I_{bias} R_{E1} = (4.9 - 0.1)\times\frac{2.6k}{1.2M} - 4 \times 16\mu \times 2.6k = 0.155 V_{typ}$

$UTP - LTP = \Delta V_{out} \frac{R_{E1}}{R_F} - 4 I_{bias} R_{E1} = (4.9 - 0.1)\times\frac{2.6k}{1.2M} - 4 \times 55\mu \times 2.6k = 0.562 V_{max}$

One can see that I_{bias} being so large here will cause a huge difference on the hysteresis. In order to reduce this effect we must lower all resistor values - let us reduce them by a factor of ten.
Tentative circuit #2

\[UTP - LTP = \Delta V_{out} \frac{R_{E1}}{R_F} - 4 I_{bias} R_{E1} = (4.9 - 0.1) \times \frac{260}{120k} - 4 \times (\pm 16\mu) \times 260 = 6.24 \text{ mV or } 27.04 \text{ mV typ} \]

With small resistors, the hysteresis is much smaller but somewhat unpredictable. If \(I_{bias} \) is positive, the hysteresis will be 6.24 mV typical, if it is negative then it will be 27.04 mV typical. Note that \(I_{bias} \) and \(V_{io} \) of the comparator will also modify the expected detection threshold, therefore one of the 150 resistors should be trimmed for an accurate detection threshold of -4V. The currents in the above circuit will be too large for most IC’s to handle, therefore one should modify the design as shown below where the buffers allow the use of larger resistors and reasonable currents drawn from \(V_{in} \) and \(V_{REF} \).

Final Circuit

\[\frac{R_F}{R_E} = \frac{\Delta V_{out}}{UTP - LTP} \times \left(1 + \frac{R_{E1}}{R_{E2}} \right) = \frac{(4.9 - 0.1)}{10m} \times \frac{(1k + 2.6k)}{1k} = 1728 \text{ if } I_{bias} \text{ is ignored.} \]

\[UTP - LTP = \left(\frac{\Delta V_{out}}{R_F} \pm 2 I_{bias} R_E \right) \times \frac{R_{E1} + R_{E2}}{R_{E2}} \]

\[UTP - LTP = \left((4.9 - 0.1) \times \frac{6.8}{12k} \pm 2 \times 16\mu \times 6.8 \right) \times \left(\frac{1k + 2.6k}{1k} \right) = \frac{9 \text{ mV}}{10.57 \text{ mV typ}} \]
INVERTING SCHMITT TRIGGER DESIGN PROCEDURE - DC HYSTERESIS

Transfer function

\[V_o = V_{sat} - V_{in} \]

Circuit diagram

\[V_{in} \]

Thevenin equivalent:

\[R_{TH} = R_1 \parallel R_2 \]

\[V_{TH} = V_{SUP} \times \frac{R_2}{R_1 + R_2} \]

1. With open collector voltage comparators, select pull-up resistor small enough for good switching speed (turn off time \(\alpha R_F C_{stray} \)) and not too small not to overload the O/P.

2. Calculate the ratio

\[\frac{R_F}{R_{TH}} = \frac{V_o^+ - V_o^-}{UTP - LTP} - 1 = \frac{\Delta V_o}{\Delta V_{in}} - 1 = \beta \]

If the result is a negative resistor ratio, \(V_{in} \) has to be attenuated with voltage divider \(R_{E1} \parallel R_{E2} \) where

\[\frac{R_F}{R_{TH}} = \frac{V_o^+ - V_o^-}{UTP_A - LTP_A} - 1 \]

With pull-up resistor, assume a reasonable \(V_o^+ \).

3. A) With no pull-up, select standard \(R_F \) value large enough so that op amp O/P is not overloaded and not too large. Next calculate the value of \(R_{TH} \) for ratio \(\beta \) found in step 2.

B) With pull-up resistor, determine the value \(R_F \) necessary to obtain assumed \(V_o^+ \) and select closest standard value. Next calculate the value of \(R_{TH} \) from ratio \(\beta \) found in step 2.

4. Using values of \(R_{TH} \) and \(R_F \) analyze the circuit to find \(V_{TH} \) needed by assuming \(V^+ = V^- \) at one of the trigger points then calculate the ratio \(R_1/R_2 = V_1/V_2 = \alpha \) for the desired \(V_{TH} \). Determine theoretical values of \(R_1 \) and \(R_2 \) for desired ratio \(R_1/R_2 \) and \(R_{TH} = R_1 \parallel R_2 \) as found in step 3.

Solving for \(R_2 \) in the equation shown beside will satisfy both conditions. Since both \(R_{TH} \) and the ratio are critical for an accurate hysteresis, select a combination of two standard resistors to achieve theoretical values of \(R_1 \) and \(R_2 \).

5. With single \(R_{E1} \), make \(R_F = R_1 \parallel R_2 \parallel R_F \) for minimum DC offset. With \(R_{E1} \) and \(R_{E2} \),

\[\frac{1}{R_{E1}} + \frac{1}{R_{E2}} = \left[\frac{1}{R_1 \parallel R_2} \right] = \frac{1}{\gamma R_{E2}} + \frac{1}{R_{E2}} \]

Solve for \(R_{E2} \) (theo), then try several standard values around \(R_{E2} \) (theo) and select best \(R_{E1} \) - \(R_{E2} \) combination for an accurate ratio \(\gamma = R_{E1}/R_{E2} \).
DESIGN EXAMPLE 6 INVERTING SCHMITT TRIGGER

Design a Schmitt trigger with the transfer function shown beside using an LM311 voltage comparator.

1. Let $I_{R_P} = 5$ mA max not to overload the LM311 output, therefore $R_P \geq (15-(-14.8))/5m = 5.96K$, let $R_P = 6.8K$

2. $\frac{R_F}{R_{TH}} = \frac{V^+ - V^-}{V_{TP-} - V_{TP+}} - 1 = 14.5 - ((-14.8)) / 7 - (-5) - 1 = 1.442 = \beta$

3. $R_F = 7.5 / 73.53\mu = 102k, 100K std$
 $R_{TH} = \frac{100K}{1.443} = 69.36K$

4. $V_{th} = 7 - 5.19 = +1.804V$
 NOTE: do not assume $V_o^+ = +14.5V$ because standard R_F is now used and $I = (15 - 7)/106.8K = 74.98 \mu A$

 You can also use the other trigger point to find V_{TH} - result will differ slightly.

 $R_1 / R_2 = 13.196/1.804 = 7.314 = \alpha$

 $\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{R_{TH}}$ \Rightarrow $\frac{1}{7.314R_2} + \frac{1}{R_2} = \frac{1}{69.36k}$

 solving \Rightarrow $R_2 = 78.84k$

 Since both R_{TH} and the ratio R_1/R_2 are important, let $R_2 = 75K + 3.9K std$, therefore we have $R_1 = 78.9K x 7.314 = 576.6k$, that is 560k in series with 16k.

5. $R_F = R_2 || R_{TP} = 576.6k || 78.9k || 100k$
 $R_F = 40.97k \Rightarrow 39k std$
Analysis of trigger points

Waveforms