PART 1 AGC with passive peak detector

Circuit Diagram

Variable amplitude signal

12k

0.33 uF

Vin

12k

0.33 uF

AGC VOLTAGE

ANALOG MULTIPLIER

+15V

Vw

2.2k

22k

LF347

Vo1

Constant amplitude signal

INTEGRATOR

1N4148

PASSIVE PEAK DETECTOR

0.33 uF

100k

100k

1N5234B

470

+15V

AD633JN/AD633AN

AD633 Analog Multiplier

LF347 Quad Op Amp
ELECTRONICS 2 LAB

AUTOMATIC GAIN CONTROL (AGC)

Pre-lab

1. Determine the regulated amplitude of V_{o1} – look up Zener data at http://www.fairchildsemi.com/

2. Determine V_{Y1} min and max assuming typical saturation voltages for LF347 with $V_{sup} = \pm 15V$

3. Determine the range of input voltages (main input V_{in}) for which the AGC is operational. Why does not the AGC work outside this above-calculated range?

4. What is the peak AC voltage of V_w?

5. Determine the peak to peak ripple at the peak detector output and at V_{Y1} for frequencies of 1 kHz and 10 kHz. Draw the expected ripple waveforms.

Lab Procedure

NOTE: The HP signal generator displays half the actual O/P amplitude if load >> 50Ω
If load = 50Ω, it displays the correct amplitude.

1. Assemble circuit as per breadboard layout provided at the end.

2. Using a 1 kHz input sinewave, adjust the amplitude of V_{in} in order to obtain the DC voltages for V_{Y1} listed below. For each case measure the corresponding values of $V_{o2} (DC)$, $V_{o1} (rms)$, $V_w(rms)$ and $V_{in} (rms)$ with the DMM. Monitor V_{in} and V_{o1} on the oscilloscope throughout. Calculate A_{mult} from measurements.

3. Repeat the above for $V_{Y1}(DC)$ slightly above minimum and slightly below maximum when V_{o1} is still constant.

<table>
<thead>
<tr>
<th>$V_{Y1} (DC)$</th>
<th>min</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{o2} (DC)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{o1} (rms)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{in} (rms)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_w(rms)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$A_{mult} = \frac{V_w}{V_{in}}$

4. Measure the exact value of the Zener reference voltage – record value.

5. Measure the ripple voltage (with the scope) at the peak detector output and at V_{Y1} at frequencies of 100 Hz, 1 kHz and 10 kHz – ripple may be too small to be measured in some cases. Ensure that V_{in} is within operating range.
6. With V_{in} set such as to obtain V_{Y1} around 4V DC, measure $V_{o1\text{ (rms)}}$ at 1 kHz, 10 kHz, 100 kHz and measure the minimum and maximum frequencies at which V_{o1} is no longer regulated.

7. Measure THD of V_{in}, V_w and V_{o1} at 1 kHz when AGC loop functions at $V_{Y1} = 1V$ and $V_{Y1} = 10V$.

<table>
<thead>
<tr>
<th>V_{Y1}</th>
<th>%THD of V_{in}</th>
<th>%THD of V_w</th>
<th>%THD of V_{o1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{Y1} = 1V$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{Y1} = 10V$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post lab

1. Compare measured values to pre-lab values everywhere applicable.

2. Did V_{o1} vary at all? What was the % variation of V_{o1} over the entire range of V_{in} at 1 kHz? Is this % variation acceptable? Explain.

3. Which device introduced the most distortion? Explain. Was distortion different for different input levels?

4. Using the results of step 3 of the procedure, explain how the AGC circuit works.

PART 2 AGC with active peak detector

Circuit Diagram

Pre-lab
1. Determine the regulated amplitude of V_{o1} – look up Zener data at http://www.fairchildsemi.com/

2. Determine V_{Y1} min and max assuming typical saturation voltages for LF347 with $V_{sup} = \pm 15V$

3. Determine the range of input voltages (main input V_{in}) for which the AGC is operational. Why does not the AGC work outside this above-calculated range?

4. What is the peak AC voltage of V_w?

5. Determine the peak to peak ripple at the peak detector output and at V_{Y1} for frequencies of 1 kHz and 10 kHz. Draw the expected ripple waveforms.

Lab Procedure

1. Assemble circuit as per breadboard layout provided at the end – don’t forget to remove the 47 pF capacitor in the inverting amplifier.

2. Using a 1 kHz input sinewave, **adjust the amplitude of V_{in}** in order to obtain the DC voltages for V_{Y1} listed below. For each case measure the corresponding values of V_{o2} (DC), V_{o1} (rms), V_w(rms) and V_{in} (rms) with the DMM. Monitor V_{in} and V_{o1} on the oscilloscope throughout. Calculate A_{mult} from measurements.

3. Repeat the above for $V_{Y1(DC)}$ slightly above minimum and slightly below maximum when V_{o1m} is still constant.

<table>
<thead>
<tr>
<th>V_{Y1} (DC)</th>
<th>min</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{o2} (DC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{o1} (rms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{in} (rms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_w(rms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{mult} = \frac{V_w}{V_{in}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Measure the exact value of the Zener reference voltage – record value.

5. Measure the ripple voltage (with the scope) at the peak detector output and at V_{Y1} at frequencies of 100 Hz, 1 kHz and 10 kHz – ripple may be too small to be measured in some cases. Ensure that V_{in} is within operating range.

6. With V_{in} set such as to obtain V_{Y1} around 4V DC, measure V_{o1} (rms) at 1 kHz, 10 kHz, 100 kHz and measure the minimum and maximum frequencies at which V_{o1} is no longer regulated.
1. Compare measured values to pre-lab values everywhere applicable.

2. Did V_{o1} vary at all? What was the % variation of V_{o1}? Is it good? Explain.

3. Using the results of step 3 of the procedure, explain how the AGC circuit works.

4. Compare the performance of the two AGC circuits. Which one performed better? Explain.

 Which circuit has a more predictable and accurate output? Explain.

 Which one operated over a wider frequency range?